ALS Technichem (HK) Pty Ltd

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR K.W. FAN

WORK ORDER

HK2240047

CLIENT

: ENVIROTECH SERVICES CO.

SUB-BATCH

ADDRESS

: RM 712, 7/F, MY LOFT 9 HOI WING ROAD,

DATE RECEIVED : 11-OCT-2022

TUEN MUN, N.T., HK

DATE OF ISSUE : 20-OCT-2022

NO. OF SAMPLES : 1

CLIENT ORDER

: 1

PROJECT

General Comments

 Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.

- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N T Hong Kong Kwai Tsing Hong Kong

WORK ORDER

: HK2240047

SUB-BATCH

• 1

: ENVIROTECH SERVICES CO.

CLIENT PROJECT

ALS

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2240047-001	S/N: 336338	Equipments	11-Oct-2022	S/N: 336338	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD - 3B

Serial No.

336338

Equipment Ref:

NA

Job Order

HK2240047

Standard Equipment:

Standard Equipment:

Higher Volume Sampler (TSP)

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

13 September 2022

Equipment Verification Results:

Verification Date:

14 October 2022

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr15mins	09:33 ~ 11:48	26.9	1012.1	44.6	2621	19.5
2hr01 mins	11:51 ~ 13:52	26.9	1012.1	45.7	2722	22.6
2hr01 mins	13:55 ~ 15:56	26.9	1012.1	56.6	2922	24.1

60

50

30

20 10

Linear Regression of Y or X

Slope (K-factor):

2.2211 (µg/m³)/CPM

Correlation Coefficient (R)

0.9920

Date of Issue

17 October 2022

Remarks:

Strong Correlation (R>0.8) 1.

Factor 2.2211 (µg/m³)/CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : _____ Fai So

Signature:

Date : <u>17 October 2022</u>

- 2.2211x - 0.0341

QC Reviewer : Ben Tam

Signature:

Date : <u>17 October 2022</u>

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location:

Gold King Industrial Building, Kwai Chung

Date of Calibration: 13-Sep-22

Location ID:

Calibration Room

Next Calibration Date: 13-Dec-22

CONDITIONS

Sea Lével Pressure (hPa) Temperature (°C)

1007.3 31.7

Corrected Pressure (mm Hg) Temperature (K)

755.475

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 27-Dec-21

Ostd Slope -> Qstd Intercept -> Expiry Date->

CALIBRATION

1					인단			
		H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	6	6	12.0	1.714	54	53.24	Slope = 30.1792
1	13	4.9	4.9	9.8	1.549	48	47.33	Intercept = 1.5486
	10	3.7	3.7	7.4	1.347	44	43.38	Corr. coeff. = 0.9961
	8	2.5	2.5	5.0	1.108	36	35.50	
ı	5	1.6	1.6	3.2	0.887	28	27.61	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pay = daily average pressure

RECALIBRATION DUE DATE:

December 27, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 27, 2021

Rootsmeter S/N: 438320

Ta: 295

Pa: 740.4

°K

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 1612

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3890	3.2	2.00
2	3	4	1	0.9760	6.4	4.00
3	5	6	1	0.8740	7.9	5.00
4	7	8	1	0.8320	8.8	5.50
5	9	10	1	0.6870	12.7	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
0.9799	0.7055	1.4029	0.9957	0.7168	0.8927					
0.9756	0.9996	1.9841	0.9914	1.0157	1.2624					
0.9736	1.1140	2.2183	0.9893	1.1320	1.4114					
0.9724	1.1688	2.3265	0.9881	1.1876	1.4803					
0.9673	1.4079	2.8059	0.9828	1.4306	1.7853					
	m=	1.99838		m=	1.25135					
QSTD	b=	-0.00903	QA	b=	-0.00574					
	r=	0.99999	•	r=	0.99999					

	Calculation	ns		
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime		
3500 1100057708.053	For subsequent flow rat	e calculatio	ns:	
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

	Standard Conditions	
Tstd:	298.15 °K	
Pstd:	760 mm Hg	
	Key	
ΔH: calibrator	manometer reading (in H2O)	
ΔP: rootsmete	er manometer reading (mm Hg)	
Ta: actual abs	olute temperature (°K)	
Pa: actual bar	ometric pressure (mm Hg)	
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cc

TOLL FREE: (877)263-761

FAX: (513)467-90

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK2241670 WORK ORDER CONTACT : MR K.W. FAN

CLIENT : ENVIROTECH SERVICES CO.

ADDRESS : RM 712, 7/F, MY LOFT 9 HOI WING ROAD, SUB-BATCH : 1

> DATE RECEIVED : 21-OCT-2022 TUEN MUN, N.T., HK

DATE OF ISSUE : 1-NOV-2022

PROJECT NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.

- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd

: HK2241670 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2241670-001	S/N: 436553	Equipments	21-Oct-2022	S/N: 436553

 $\mathsf{Page}: 2 \text{ of } 2$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD – 3B

Serial No. 436553

Equipment Ref: NA

Job Order HK2241670

Standard Equipment:

Standard Equipment: Higher Volume Sampler (TSP)

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 13 September 2022

Equipment Verification Results:

Verification Date: 25 October 2022

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m³ (Standard Equipment)	5	
2hr01mins	09:20 ~ 11:21	23.8	1018.2	33.7	2401	19.9
2hr02mins	11:23 ~ 13:25	23.8	1018.2	27.9	2303	18.9
2hr04mins	13:27 ~ 15:31	23.8	1018.2	43.6	2703	21.9

Linear Regression of Y or X

Slope (K-factor): <u>1.7854 (μg/m³)/CPM</u>

Correlation Coefficient (R) 0.9729

Date of Issue 26 October 2022

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 1.7854 (µg/m³)/CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : _____ Fai So Signature : _____ Date : ____ 26 October 2022

QC Reviewer : Ben Tam Signature : Date : 26 October 2022

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 13-Sep-22

Location ID: Calibration Room Next Calibration Date: 13-Dec-22

CONDITIONS

Sea Level Pressure (hPa)

1007.3 Temperature (°C) 31.7

Corrected Pressure (mm Hg) Temperature (K)

755.475 305

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 27-Dec-21

Qstd Slope -> Qstd Intercept -> Expiry Date->

1.99838 -0.00903 27-Dec-22

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.714	54	53.24	Slope = 30.1792
13	4.9	4.9	9.8	1.549	48	47.33	Intercept = 1.5486
10	3.7	3.7	7.4	1.347	44	43.38	Corr. coeff. = 0.9961
8	2.5	2.5	5.0	1.108	36	35.50	
5	1.6	1.6	3.2	0.887	28	27.61	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

December 27, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 27, 2021

Rootsmeter S/N: 438320

Ta: 295

°K

Operator: Jim Tisch

Pa: 740.4

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3890	3.2	2.00
2	3	4	1	0.9760	6.4	4.00
3	5	6	1	0.8740	7.9	5.00
4	7	8	1	0.8320	8.8	5.50
5	9	10	1	0.6870	12.7	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H(\frac{Pa}{Pstd})(\frac{Tstd}{Ta})}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
0.9799	0.7055	1.4029	0.9957	0.7168	0.8927				
0.9756	0.9996	1.9841	0.9914	1.0157	1.2624				
0.9736	1.1140	2.2183	0.9893	1.1320	1.4114				
0.9724	1.1688	2.3265	0.9881	1.1876	1.4803				
0.9673	1.4079	2.8059	0.9828	1.4306	1.7853				
	m=	1.99838		m=	1.25135				
QSTD	b=	-0.00903	QA	b=	-0.00574				
	r=	0.99999	,	r=	0.99999				

Calculations				
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime	
For subsequent flow rate calculations:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$	

Standard Conditions				
Tstd:	298.15 °K			
Pstd:	760 mm Hg			
Key				
ΔH: calibrator manometer reading (in H2O)				
ΔP: rootsmeter manometer reading (mm Hg)				
Ta: actual absolute temperature (°K)				
Pa: actual barometric pressure (mm Hg)				
b: intercept				
m: slope				

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009